Papers
Topics
Authors
Recent
2000 character limit reached

Robust Recovery of Primitive Variables in Relativistic Ideal Magnetohydrodynamics

Published 4 May 2020 in gr-qc | (2005.01821v2)

Abstract: Modern simulation codes for general relativistic ideal magnetohydrodynamics are all facing a long standing technical problem given by the need to recover fundamental variables from those variables that are evolved in time. In the relativistic case, this requires the numerical solution of a system of nonlinear equations. Although several approaches are available, none has proven completely reliable. A recent study comparing different methods showed that all can fail, in particular for the important case of strong magnetization and moderate Lorentz factors. Here, we propose a new robust, efficient, and accurate solution scheme, along with a proof for the existence and uniqueness of a solution, and analytic bounds for the accuracy. Further, the scheme allows us to reliably detect evolution errors leading to unphysical states and automatically applies corrections for typical harmless cases. A reference implementation of the method is made publicly available as a software library. The aim of this library is to improve the reliability of binary neutron star merger simulations, in particular in the investigation of jet formation and magnetically driven winds.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.