Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spying on your neighbors: Fine-grained probing of contextual embeddings for information about surrounding words (2005.01810v1)

Published 4 May 2020 in cs.CL and cs.AI

Abstract: Although models using contextual word embeddings have achieved state-of-the-art results on a host of NLP tasks, little is known about exactly what information these embeddings encode about the context words that they are understood to reflect. To address this question, we introduce a suite of probing tasks that enable fine-grained testing of contextual embeddings for encoding of information about surrounding words. We apply these tasks to examine the popular BERT, ELMo and GPT contextual encoders, and find that each of our tested information types is indeed encoded as contextual information across tokens, often with near-perfect recoverability-but the encoders vary in which features they distribute to which tokens, how nuanced their distributions are, and how robust the encoding of each feature is to distance. We discuss implications of these results for how different types of models breakdown and prioritize word-level context information when constructing token embeddings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Josef Klafka (1 paper)
  2. Allyson Ettinger (29 papers)
Citations (40)