Papers
Topics
Authors
Recent
2000 character limit reached

Frugal Optimization for Cost-related Hyperparameters

Published 4 May 2020 in cs.LG and stat.ML | (2005.01571v3)

Abstract: The increasing demand for democratizing machine learning algorithms calls for hyperparameter optimization (HPO) solutions at low cost. Many machine learning algorithms have hyperparameters which can cause a large variation in the training cost. But this effect is largely ignored in existing HPO methods, which are incapable to properly control cost during the optimization process. To address this problem, we develop a new cost-frugal HPO solution. The core of our solution is a simple but new randomized direct-search method, for which we prove a convergence rate of $O(\frac{\sqrt{d}}{\sqrt{K}})$ and an $O(d\epsilon{-2})$-approximation guarantee on the total cost. We provide strong empirical results in comparison with state-of-the-art HPO methods on large AutoML benchmarks.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.