Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CARRADA Dataset: Camera and Automotive Radar with Range-Angle-Doppler Annotations (2005.01456v6)

Published 4 May 2020 in cs.CV

Abstract: High quality perception is essential for autonomous driving (AD) systems. To reach the accuracy and robustness that are required by such systems, several types of sensors must be combined. Currently, mostly cameras and laser scanners (lidar) are deployed to build a representation of the world around the vehicle. While radar sensors have been used for a long time in the automotive industry, they are still under-used for AD despite their appealing characteristics (notably, their ability to measure the relative speed of obstacles and to operate even in adverse weather conditions). To a large extent, this situation is due to the relative lack of automotive datasets with real radar signals that are both raw and annotated. In this work, we introduce CARRADA, a dataset of synchronized camera and radar recordings with range-angle-Doppler annotations. We also present a semi-automatic annotation approach, which was used to annotate the dataset, and a radar semantic segmentation baseline, which we evaluate on several metrics. Both our code and dataset are available online.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. A. Ouaknine (1 paper)
  2. A. Newson (1 paper)
  3. J. Rebut (1 paper)
  4. F. Tupin (1 paper)
  5. P. Pérez (7 papers)
Citations (125)

Summary

We haven't generated a summary for this paper yet.