Papers
Topics
Authors
Recent
2000 character limit reached

Duoidal categories, measuring comonoids and enrichment (2005.01340v1)

Published 4 May 2020 in math.CT

Abstract: We extend the theory of Sweeder's measuring comonoids to the framework of duoidal categories: categories equipped with two compatible monoidal structures. We use one of the tensor products to endow the category of monoids for the other with an enrichment in the category of comonoids. The enriched homs are provided by the universal measuring comonoids. We study a number of duoidal structures on categories of graded objects and of species and the associated enriched categories, such as an enrichment of graded (twisted) monoids in graded (twisted) comonoids, as well as two enrichments of symmetric operads in symmetric cooperads.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.