Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Learning of the Optimal Batch Size of SGD

Published 3 May 2020 in cs.LG, math.OC, and stat.ML | (2005.01097v2)

Abstract: Recent advances in the theoretical understanding of SGD led to a formula for the optimal batch size minimizing the number of effective data passes, i.e., the number of iterations times the batch size. However, this formula is of no practical value as it depends on the knowledge of the variance of the stochastic gradients evaluated at the optimum. In this paper we design a practical SGD method capable of learning the optimal batch size adaptively throughout its iterations for strongly convex and smooth functions. Our method does this provably, and in our experiments with synthetic and real data robustly exhibits nearly optimal behaviour; that is, it works as if the optimal batch size was known a-priori. Further, we generalize our method to several new batch strategies not considered in the literature before, including a sampling suitable for distributed implementations.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.