Papers
Topics
Authors
Recent
2000 character limit reached

The Maximum Number of Cliques in Hypergraphs without Large Matchings

Published 3 May 2020 in math.CO | (2005.01080v2)

Abstract: Let $[n]$ denote the set ${1, 2, \ldots, n}$ and $\mathcal{F}{(r)}_{n,k,a}$ be an $r$-uniform hypergraph on the vertex set $[n]$ with edge set consisting of all the $r$-element subsets of $[n]$ that contains at least $a$ vertices in $[ak+a-1]$. For $n\geq 2rk$, Frankl proved that $\mathcal{F}{(r)}_{n,k,1}$ maximizes the number of edges in $r$-uniform hypergraphs on $n$ vertices with the matching number at most $k$. Huang, Loh and Sudakov considered a multicolored version of the Erd\H{o}s matching conjecture, and provided a sufficient condition on the number of edges for a multicolored hypergraph to contain a rainbow matching of size $k$. In this paper, we show that $\mathcal{F}{(r)}_{n,k,a}$ maximizes the number of $s$-cliques in $r$-uniform hypergraphs on $n$ vertices with the matching number at most $k$ for sufficiently large $n$, where $a=\lfloor \frac{s-r}{k} \rfloor+1$. We also obtain a condition on the number of $s$-clques for a multicolored $r$-uniform hypergraph to contain a rainbow matching of size $k$, which reduces to the condition of Huang, Loh and Sudakov when $s=r$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.