Papers
Topics
Authors
Recent
2000 character limit reached

Bootstrapping Techniques for Polysynthetic Morphological Analysis

Published 3 May 2020 in cs.CL | (2005.00956v1)

Abstract: Polysynthetic languages have exceptionally large and sparse vocabularies, thanks to the number of morpheme slots and combinations in a word. This complexity, together with a general scarcity of written data, poses a challenge to the development of natural language technologies. To address this challenge, we offer linguistically-informed approaches for bootstrapping a neural morphological analyzer, and demonstrate its application to Kunwinjku, a polysynthetic Australian language. We generate data from a finite state transducer to train an encoder-decoder model. We improve the model by "hallucinating" missing linguistic structure into the training data, and by resampling from a Zipf distribution to simulate a more natural distribution of morphemes. The best model accounts for all instances of reduplication in the test set and achieves an accuracy of 94.7% overall, a 10 percentage point improvement over the FST baseline. This process demonstrates the feasibility of bootstrapping a neural morph analyzer from minimal resources.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.