Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring Contextualized Neural Language Models for Temporal Dependency Parsing (2004.14577v2)

Published 30 Apr 2020 in cs.CL

Abstract: Extracting temporal relations between events and time expressions has many applications such as constructing event timelines and time-related question answering. It is a challenging problem which requires syntactic and semantic information at sentence or discourse levels, which may be captured by deep contextualized LMs such as BERT (Devlin et al., 2019). In this paper, we develop several variants of BERT-based temporal dependency parser, and show that BERT significantly improves temporal dependency parsing (Zhang and Xue, 2018a). We also present a detailed analysis on why deep contextualized neural LMs help and where they may fall short. Source code and resources are made available at https://github.com/bnmin/tdp_ranking.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.