Papers
Topics
Authors
Recent
Search
2000 character limit reached

COVID-19 and the difficulty of inferring epidemiological parameters from clinical data

Published 28 Apr 2020 in q-bio.QM and q-bio.PE | (2004.14482v2)

Abstract: Knowing the infection fatality ratio (IFR) is of crucial importance for evidence-based epidemic management: for immediate planning; for balancing the life years saved against the life years lost due to the consequences of management; and for evaluating the ethical issues associated with the tacit willingness to pay substantially more for life years lost to the epidemic, than for those to other diseases. Against this background Verity et al. (2020, Lancet Infections Diseases) have rapidly assembled case data and used statistical modelling to infer the IFR for COVID-19. We have attempted an in-depth statistical review of their approach, to identify to what extent the data are sufficiently informative about the IFR to play a greater role than the modelling assumptions, and have tried to identify those assumptions that appear to play a key role. Given the difficulties with other data sources, we provide a crude alternative analysis based on the Diamond Princess Cruise ship data and case data from China, and argue that, given the data problems, modelling of clinical data to obtain the IFR can only be a stop-gap measure. What is needed is near direct measurement of epidemic size by PCR and/or antibody testing of random samples of the at risk population.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.