Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Punkt for Sentence Segmentation in non-Latin Scripts: Experiments on Kurdish (Sorani) Texts (2004.14134v2)

Published 9 Apr 2020 in cs.CL

Abstract: Segmentation is a fundamental step for most Natural Language Processing tasks. The Kurdish language is a multi-dialect, under-resourced language which is written in different scripts. The lack of various segmented corpora is one of the major bottlenecks in Kurdish language processing. We used Punkt, an unsupervised machine learning method, to segment a Kurdish corpus of Sorani dialect, written in Persian-Arabic script. According to the literature, studies on using Punkt on non-Latin data are scanty. In our experiment, we achieved an F1 score of 91.10% and had an Error Rate of 16.32%. The high Error Rate is mainly due to the situation of abbreviations in Kurdish and partly because of ordinal numerals. The data is publicly available at https://github.com/KurdishBLARK/ KTC-Segmented for non-commercial use under the CC BY-NC-SA 4.0 licence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Roshna Omer Abdulrahman (2 papers)
  2. Hossein Hassani (26 papers)
Citations (4)