The Scharfetter--Gummel scheme for aggregation-diffusion equations
Abstract: In this paper, we propose a finite-volume scheme for aggregation-diffusion equations based on a Scharfetter--Gummel approximation of the quadratic, nonlocal flux term. This scheme is analyzed concerning well-posedness and convergence towards solutions to the continuous problem. Also, it is proven that the numerical scheme has several structure-preserving features. More specifically, it is shown that the discrete solutions satisfy a free-energy dissipation relation analogous to the continuous model. Consequently, the numerical solutions converge in the large time limit to stationary solutions, for which we provide a thermodynamic characterization. Numerical experiments complement the study.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.