Papers
Topics
Authors
Recent
2000 character limit reached

Less is More: Sample Selection and Label Conditioning Improve Skin Lesion Segmentation

Published 28 Apr 2020 in cs.CV | (2004.13856v1)

Abstract: Segmenting skin lesions images is relevant both for itself and for assisting in lesion classification, but suffers from the challenge in obtaining annotated data. In this work, we show that segmentation may improve with less data, by selecting the training samples with best inter-annotator agreement, and conditioning the ground-truth masks to remove excessive detail. We perform an exhaustive experimental design considering several sources of variation, including three different test sets, two different deep-learning architectures, and several replications, for a total of 540 experimental runs. We found that sample selection and detail removal may have impacts corresponding, respectively, to 12% and 16% of the one obtained by picking a better deep-learning model.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.