Papers
Topics
Authors
Recent
2000 character limit reached

The Benefit of Being Non-Lazy in Probabilistic λ-calculus

Published 27 Apr 2020 in cs.LO | (2004.12891v1)

Abstract: We consider the probabilistic applicative bisimilarity (PAB), a coinductive relation comparing the applicative behaviour of probabilistic untyped lambda terms according to a specific operational semantics. This notion has been studied with respect to the two standard parameter passing policies, call-by-value (cbv) and call-by-name (cbn), using a lazy reduction strategy not reducing within the body of a function. In particular, PAB has been proven to be fully abstract with respect to the contextual equivalence in cbv but not in lazy cbn. We overcome this issue of cbn by relaxing the laziness constraint: we prove that PAB is fully abstract with respect to the standard head reduction contextual equivalence. Our proof is based on the Leventis Separation Theorem, using probabilistic Nakajima trees as a tree-like representation of the contextual equivalence classes. Finally, we prove also that the inequality full abstraction fails, showing that the probabilistic applicative similarity is strictly contained in the contextual preorder.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.