Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Epistemic Approach to the Formal Specification of Statistical Machine Learning (2004.12734v3)

Published 27 Apr 2020 in cs.LO, cs.AI, cs.CR, cs.LG, and cs.SE

Abstract: We propose an epistemic approach to formalizing statistical properties of machine learning. Specifically, we introduce a formal model for supervised learning based on a Kripke model where each possible world corresponds to a possible dataset and modal operators are interpreted as transformation and testing on datasets. Then we formalize various notions of the classification performance, robustness, and fairness of statistical classifiers by using our extension of statistical epistemic logic (StatEL). In this formalization, we show relationships among properties of classifiers, and relevance between classification performance and robustness. As far as we know, this is the first work that uses epistemic models and logical formulas to express statistical properties of machine learning, and would be a starting point to develop theories of formal specification of machine learning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.