Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Galois-theoretic features for 1-smooth pro-$p$ groups (2004.12605v5)

Published 27 Apr 2020 in math.GR and math.NT

Abstract: Let $p$ be a prime. A pro-$p$ group $G$ is said to be 1-smooth if it can be endowed with a continuous representation $\theta\colon G\to\mathrm{GL}_1(\mathbb{Z}_p)$ such that every open subgroup $H$ of $G$, together with the restriction $\theta\vert_H$, satisfies a formal version of Hilbert 90. We prove that every 1-smooth pro-$p$ group contains a unique maximal closed abelian normal subgroup, in analogy with a result by Engler and Koenigsmann on maximal pro-$p$ Galois groups of fields, and that if a 1-smooth pro-$p$ group is solvable, then it is locally uniformly powerful, in analogy with a result by Ware on maximal pro-$p$ Galois groups of fields. Finally we ask whether 1-smooth pro-$p$ groups satisfy a "Tits' alternative".

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.