Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Counterexamples to conjectures by Gross, Mansour and Tucker on partial-dual genus polynomials of ribbon graphs (2004.12564v2)

Published 27 Apr 2020 in math.CO

Abstract: Gross, Mansour and Tucker introduced the partial-dual orientable genus polynomial and the partial-dual Euler genus polynomial. They computed these two partial-dual genus polynomials of four families of ribbon graphs, posed some research problems and made some conjectures. In this paper, we introduce the notion of signed sequences of bouquets and obtain the partial-dual Euler genus polynomials for all ribbon graphs with the number of edges less than 4 and the partial-dual orientable genus polynomials for all orientable ribbon graphs with the number of edges less than 5 in terms of signed sequences. We check all the conjectures and find a counterexample to the Conjecture 3.1 in their paper: There is no orientable ribbon graph having a non-constant partial-dual genus polynomial with only one non-zero coefficient. Motivated by this counterexample, we further find an infinite family of counterexamples to the conjecture. Moreover, we find a counterexample to the Conjecture 5.3 in their paper: The partial-dual Euler-genus polynomial for any non-orientable ribbon graph is interpolating.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube