Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transferable Perturbations of Deep Feature Distributions (2004.12519v1)

Published 27 Apr 2020 in cs.LG and stat.ML

Abstract: Almost all current adversarial attacks of CNN classifiers rely on information derived from the output layer of the network. This work presents a new adversarial attack based on the modeling and exploitation of class-wise and layer-wise deep feature distributions. We achieve state-of-the-art targeted blackbox transfer-based attack results for undefended ImageNet models. Further, we place a priority on explainability and interpretability of the attacking process. Our methodology affords an analysis of how adversarial attacks change the intermediate feature distributions of CNNs, as well as a measure of layer-wise and class-wise feature distributional separability/entanglement. We also conceptualize a transition from task/data-specific to model-specific features within a CNN architecture that directly impacts the transferability of adversarial examples.

Citations (82)

Summary

We haven't generated a summary for this paper yet.