Papers
Topics
Authors
Recent
2000 character limit reached

AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement with Neural Searching

Published 26 Apr 2020 in cs.CV | (2004.12292v1)

Abstract: Remote photoplethysmography (rPPG), which aims at measuring heart activities without any contact, has great potential in many applications (e.g., remote healthcare). Existing end-to-end rPPG and heart rate (HR) measurement methods from facial videos are vulnerable to the less-constrained scenarios (e.g., with head movement and bad illumination). In this letter, we explore the reason why existing end-to-end networks perform poorly in challenging conditions and establish a strong end-to-end baseline (AutoHR) for remote HR measurement with neural architecture search (NAS). The proposed method includes three parts: 1) a powerful searched backbone with novel Temporal Difference Convolution (TDC), intending to capture intrinsic rPPG-aware clues between frames; 2) a hybrid loss function considering constraints from both time and frequency domains; and 3) spatio-temporal data augmentation strategies for better representation learning. Comprehensive experiments are performed on three benchmark datasets to show our superior performance on both intra- and cross-dataset testing.

Citations (119)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.