Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Urban Anomaly Analytics: Description, Detection, and Prediction (2004.12094v1)

Published 25 Apr 2020 in cs.SI and cs.LG

Abstract: Urban anomalies may result in loss of life or property if not handled properly. Automatically alerting anomalies in their early stage or even predicting anomalies before happening are of great value for populations. Recently, data-driven urban anomaly analysis frameworks have been forming, which utilize urban big data and machine learning algorithms to detect and predict urban anomalies automatically. In this survey, we make a comprehensive review of the state-of-the-art research on urban anomaly analytics. We first give an overview of four main types of urban anomalies, traffic anomaly, unexpected crowds, environment anomaly, and individual anomaly. Next, we summarize various types of urban datasets obtained from diverse devices, i.e., trajectory, trip records, CDRs, urban sensors, event records, environment data, social media and surveillance cameras. Subsequently, a comprehensive survey of issues on detecting and predicting techniques for urban anomalies is presented. Finally, research challenges and open problems as discussed.

Citations (67)

Summary

We haven't generated a summary for this paper yet.