Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

YCB-M: A Multi-Camera RGB-D Dataset for Object Recognition and 6DoF Pose Estimation (2004.11657v2)

Published 24 Apr 2020 in cs.RO and cs.CV

Abstract: While a great variety of 3D cameras have been introduced in recent years, most publicly available datasets for object recognition and pose estimation focus on one single camera. In this work, we present a dataset of 32 scenes that have been captured by 7 different 3D cameras, totaling 49,294 frames. This allows evaluating the sensitivity of pose estimation algorithms to the specifics of the used camera and the development of more robust algorithms that are more independent of the camera model. Vice versa, our dataset enables researchers to perform a quantitative comparison of the data from several different cameras and depth sensing technologies and evaluate their algorithms before selecting a camera for their specific task. The scenes in our dataset contain 20 different objects from the common benchmark YCB object and model set [1], [2]. We provide full ground truth 6DoF poses for each object, per-pixel segmentation, 2D and 3D bounding boxes and a measure of the amount of occlusion of each object. We have also performed an initial evaluation of the cameras using our dataset on a state-of-the-art object recognition and pose estimation system [3].

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Till Grenzdörffer (1 paper)
  2. Martin Günther (4 papers)
  3. Joachim Hertzberg (7 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.