Subdiffusion with Time-Dependent Coefficients: Improved Regularity and Second-Order Time Stepping
Abstract: This article concerns second-order time discretization of subdiffusion equations with time-dependent diffusion coefficients. High-order differentiability and regularity estimates are established for subdiffusion equations with time-dependent coefficients. Using these regularity results and a perturbation argument of freezing the diffusion coefficient, we prove that the convolution quadrature generated by the second-order backward differentiation formula, with proper correction at the first time step, can achieve second-order convergence for both nonsmooth initial data and incompatible source term. Numerical experiments are consistent with the theoretical results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.