Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ExerSense: Real-Tme Physical Exercise Segmentation, Classification, and Counting Algorithm Using an IMU Sensor (2004.10026v1)

Published 21 Apr 2020 in cs.HC

Abstract: Even though it is well known that physical exercises have numerous emotional and physical health benefits, maintaining a regular exercise routine is quite challenging. Fortunately, there exist technologies that promote physical activity. Nonetheless, almost all of these technologies only target a narrow set of physical activities (e.g., either running or walking but not both) and are only applicable either in indoor or in outdoor environments, but do not work well in both environments. This paper introduces a real-time segmentation and classification algorithm that recognizes physical exercises and that works well in both indoor and outdoor environments. The proposed algorithm achieves a 95\% classification accuracy for five indoor and outdoor exercises, including segmentation error. This accuracy is similar or better than previous works that handled only indoor workouts and those use a vision-based approach. Moreover, while comparable machine learning-based approaches need a lot of training data, the proposed correlation-based method needs one sample of motion data of each target exercises.

Citations (7)

Summary

We haven't generated a summary for this paper yet.