Papers
Topics
Authors
Recent
2000 character limit reached

Vertex-transitive covers of semi-equivelar toroidal maps

Published 21 Apr 2020 in math.CO and math.GT | (2004.09953v1)

Abstract: A map $X$ on a surface is called vertex-transitive if the automorphism group of $X$ acts transitively on the set of vertices of $X$. If the face-cycles at all the vertices in a map are of same type then the map is called semi-equivelar. In general, semi-equivelar maps on a surface form a bigger class than vertex-transitive maps. There are semi-equivelar toroidal maps which are not vertex-transitive. In this article, we show that semi-equivelar toroidal maps are quotients of vertex-transitive toroidal maps. More explicitly, we prove that each semi-equivelar toroidal map has a finite vertex-transitive cover. In 2019, Drach {\em et al.} have shown that each vertex-transitive toroidal map has a minimal almost regular cover. Therefore, semi-equivelar toroidal maps are quotients of almost regular toroidal maps.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.