Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-label Stream Classification with Self-Organizing Maps (2004.09397v1)

Published 20 Apr 2020 in cs.LG and stat.ML

Abstract: Several learning algorithms have been proposed for offline multi-label classification. However, applications in areas such as traffic monitoring, social networks, and sensors produce data continuously, the so called data streams, posing challenges to batch multi-label learning. With the lack of stationarity in the distribution of data streams, new algorithms are needed to online adapt to such changes (concept drift). Also, in realistic applications, changes occur in scenarios of infinitely delayed labels, where the true classes of the arrival instances are never available. We propose an online unsupervised incremental method based on self-organizing maps for multi-label stream classification with infinitely delayed labels. In the classification phase, we use a k-nearest neighbors strategy to compute the winning neurons in the maps, adapting to concept drift by online adjusting neuron weight vectors and dataset label cardinality. We predict labels for each instance using the Bayes rule and the outputs of each neuron, adapting the probabilities and conditional probabilities of the classes in the stream. Experiments using synthetic and real datasets show that our method is highly competitive with several ones from the literature, in both stationary and concept drift scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.