Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Efficient, arbitrarily high precision hardware logarithmic arithmetic for linear algebra (2004.09313v2)

Published 17 Apr 2020 in math.NA and cs.NA

Abstract: The logarithmic number system (LNS) is arguably not broadly used due to exponential circuit overheads for summation tables relative to arithmetic precision. Methods to reduce this overhead have been proposed, yet still yield designs with high chip area and power requirements. Use remains limited to lower precision or high multiply/add ratio cases, while much of linear algebra (near 1:1 multiply/add ratio) does not qualify. We present a dual-base approximate logarithmic arithmetic comparable to floating point in use, yet unlike LNS it is easily fully pipelined, extendable to arbitrary precision with $O(n2)$ overhead, and energy efficient at a 1:1 multiply/add ratio. Compared to float32 or float64 vector inner product with FMA, our design is respectively 2.3x and 4.6x more energy efficient in 7 nm CMOS. It depends on exp and log evaluation 5.4x and 3.2x more energy efficient, at 0.23x and 0.37x the chip area for equivalent accuracy versus standard hyperbolic CORDIC using shift-and-add and approximated ODE integration in the style of Revol and Yakoubsohn. This technique is a novel design alternative for low power, high precision hardened linear algebra in computer vision, graphics and machine learning applications.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.