Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruction of high-resolution 6x6-mm OCT angiograms using deep learning (2004.08957v2)

Published 19 Apr 2020 in eess.IV, cs.LG, and stat.ML

Abstract: Typical optical coherence tomographic angiography (OCTA) acquisition areas on commercial devices are 3x3- or 6x6-mm. Compared to 3x3-mm angiograms with proper sampling density, 6x6-mm angiograms have significantly lower scan quality, with reduced signal-to-noise ratio and worse shadow artifacts due to undersampling. Here, we propose a deep-learning-based high-resolution angiogram reconstruction network (HARNet) to generate enhanced 6x6-mm superficial vascular complex (SVC) angiograms. The network was trained on data from 3x3-mm and 6x6-mm angiograms from the same eyes. The reconstructed 6x6-mm angiograms have significantly lower noise intensity and better vascular connectivity than the original images. The algorithm did not generate false flow signal at the noise level presented by the original angiograms. The image enhancement produced by our algorithm may improve biomarker measurements and qualitative clinical assessment of 6x6-mm OCTA.

Citations (38)

Summary

We haven't generated a summary for this paper yet.