Papers
Topics
Authors
Recent
2000 character limit reached

Cohomologies of complex manifolds with symplectic $(1,1)$-forms (2004.08841v1)

Published 19 Apr 2020 in math.DG

Abstract: Let $(X, J)$ be a complex manifold with a non-degenerated smooth $d$-closed $(1,1)$-form $\omega$. Then we have a natural double complex $\overline{\partial}+\overline{\partial}\Lambda$, where $\overline{\partial}\Lambda$ denotes the symplectic adjoint of the $\overline{\partial}$-operator. We study the Hard Lefschetz Condition on the Dolbeault cohomology groups of $X$ with respect to the symplectic form $\omega$. In \cite{TW}, we proved that such a condition is equivalent to a certain symplectic analogous of the $\partial\overline{\partial}$-Lemma, namely the $\overline{\partial}\, \overline{\partial}\Lambda$-Lemma, which can be characterized in terms of Bott--Chern and Aeppli cohomologies associated to the above double complex. We obtain Nomizu type theorems for the Bott--Chern and Aeppli cohomologies and we show that the $\overline{\partial}\, \overline{\partial}\Lambda$-Lemma is stable under small deformations of $\omega$, but not stable under small deformations of the complex structure. However, if we further assume that $X$ satisfies the $\partial\overline{\partial}$-Lemma then the $\overline{\partial}\, \overline{\partial}\Lambda$-Lemma is stable.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.