Papers
Topics
Authors
Recent
2000 character limit reached

On the existence and non-existence of improper homomorphisms of oriented and $2$-edge-coloured graphs to reflexive targets

Published 18 Apr 2020 in cs.DM and math.CO | (2004.08732v5)

Abstract: We consider non-trivial homomorphisms to reflexive oriented graphs in which some pair of adjacent vertices have the same image. Using a notion of convexity for oriented graphs, we study those oriented graphs that do not admit such homomorphisms. We fully classify those oriented graphs with tree-width $2$ that do not admit such homomorphisms and show that it is NP-complete to decide if a graph admits an orientation that does not admit such homomorphisms. We prove analogous results for $2$-edge-coloured graphs. We apply our results on oriented graphs to provide a new tool in the study of chromatic number of orientations of planar graphs -- a long-standing open problem.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.