Papers
Topics
Authors
Recent
2000 character limit reached

Singular points of the integral representation of the Mittag-Leffler function (2004.08164v2)

Published 17 Apr 2020 in math.CA and math.CV

Abstract: The paper presents an integral representation of the two-parameter Mittag-Leffler function $E_{\rho,\mu}(z)$ and singular points of this representation have been studied. It has been found that there are two singular points for this integral representation: $\zeta=1$ and $\zeta=0$. The point $\zeta=1$ is a pole of the first order and the point $\zeta=0$, depending on the values of parameters $\rho,\mu$ is either a pole or a branch point, or a regular point. The subsequent study showed that at some values of parameters $\rho,\mu$ with the help of the residue theory one can calculate the integral included in the studied integral representation and express the function $E_{\rho,\mu}(z)$ through elementary functions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.