Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient, Near Complete and Often Sound Hybrid Dynamic Data Race Prediction (extended version) (2004.06969v6)

Published 15 Apr 2020 in cs.PL

Abstract: Dynamic data race prediction aims to identify races based on a single program run represented by a trace. The challenge is to remain efficient while being as sound and as complete as possible. Efficient means a linear run-time as otherwise the method unlikely scales for real-world programs. We introduce an efficient, near complete and often sound dynamic data race prediction method that combines the lockset method with several improvements made in the area of happens-before methods. By near complete we mean that the method is complete in theory but for efficiency reasons the implementation applies some optimizations that may result in incompleteness. The method can be shown to be sound for two threads but is unsound in general. We provide extensive experimental data that shows that our method works well in practice.

Citations (4)

Summary

We haven't generated a summary for this paper yet.