Papers
Topics
Authors
Recent
2000 character limit reached

Toward Subgraph-Guided Knowledge Graph Question Generation with Graph Neural Networks

Published 13 Apr 2020 in cs.CL | (2004.06015v4)

Abstract: Knowledge graph (KG) question generation (QG) aims to generate natural language questions from KGs and target answers. Previous works mostly focus on a simple setting which is to generate questions from a single KG triple. In this work, we focus on a more realistic setting where we aim to generate questions from a KG subgraph and target answers. In addition, most of previous works built on either RNN-based or Transformer based models to encode a linearized KG sugraph, which totally discards the explicit structure information of a KG subgraph. To address this issue, we propose to apply a bidirectional Graph2Seq model to encode the KG subgraph. Furthermore, we enhance our RNN decoder with node-level copying mechanism to allow directly copying node attributes from the KG subgraph to the output question. Both automatic and human evaluation results demonstrate that our model achieves new state-of-the-art scores, outperforming existing methods by a significant margin on two QG benchmarks. Experimental results also show that our QG model can consistently benefit the Question Answering (QA) task as a mean of data augmentation.

Citations (38)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.