Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Approach to Learning Unsupervised Multilingual Embeddings (2004.05991v2)

Published 10 Apr 2020 in cs.CL, cs.LG, and stat.ML

Abstract: Recent progress on unsupervised learning of cross-lingual embeddings in bilingual setting has given impetus to learning a shared embedding space for several languages without any supervision. A popular framework to solve the latter problem is to jointly solve the following two sub-problems: 1) learning unsupervised word alignment between several pairs of languages, and 2) learning how to map the monolingual embeddings of every language to a shared multilingual space. In contrast, we propose a simple, two-stage framework in which we decouple the above two sub-problems and solve them separately using existing techniques. The proposed approach obtains surprisingly good performance in various tasks such as bilingual lexicon induction, cross-lingual word similarity, multilingual document classification, and multilingual dependency parsing. When distant languages are involved, the proposed solution illustrates robustness and outperforms existing unsupervised multilingual word embedding approaches. Overall, our experimental results encourage development of multi-stage models for such challenging problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Pratik Jawanpuria (39 papers)
  2. Mayank Meghwanshi (4 papers)
  3. Bamdev Mishra (54 papers)
Citations (4)