Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty estimation for classification and risk prediction on medical tabular data (2004.05824v2)

Published 13 Apr 2020 in stat.ML and cs.LG

Abstract: In a data-scarce field such as healthcare, where models often deliver predictions on patients with rare conditions, the ability to measure the uncertainty of a model's prediction could potentially lead to improved effectiveness of decision support tools and increased user trust. This work advances the understanding of uncertainty estimation for classification and risk prediction on medical tabular data, in a two-fold way. First, we expand and refine the set of heuristics to select an uncertainty estimation technique, introducing tests for clinically-relevant scenarios such as generalization to uncommon pathologies, changes in clinical protocol and simulations of corrupted data. We furthermore differentiate these heuristics depending on the clinical use-case. Second, we observe that ensembles and related techniques perform poorly when it comes to detecting out-of-domain examples, a critical task which is carried out more successfully by auto-encoders. These remarks are enriched by considerations of the interplay of uncertainty estimation with class imbalance, post-modeling calibration and other modeling procedures. Our findings are supported by an array of experiments on toy and real-world data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.