On the distribution of addition chains (2004.05221v4)
Abstract: In this paper, we study the theory of addition chains producing any given number $n\geq 3$. With the goal of estimating the partial sums of addition chains, we introduce the notion of the determiners and the regulators of an addition chain and prove the following identities \begin{align}\sum \limits_{j=2}{\delta(n)+1}s_j=2(n-1)+(\delta(n)-1)+a_{\delta(n)}-r_{\delta(n)+1}+\int \limits_{2}{\delta(n)-1}\sum \limits_{2\leq j\leq t}r_jdt.\nonumber \end{align}where \begin{align} 2,s_3=a_3+r_3,\ldots,s_{\delta(n)}=a_{\delta(n)}+r_{\delta(n)},s_{\delta(n)+1}=a_{\delta(n)+1}+r_{\delta(n)+1}=n\nonumber \end{align}are the associated generators of the chain $1,2,\ldots,s_{\delta(n)},s_{\delta(n)+1}=n$ of length $\delta(n)$. Also we obtain the identity \begin{align} \sum \limits_{j=2}{\delta(n)+1}a_j=(n-1)+(\delta(n)-1)+a_{\delta(n)}-r_{\delta(n)+1}+\int \limits_{2}{\delta(n)-1}\sum \limits_{2\leq j\leq t}r_jdt.\nonumber \end{align}
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.