Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropy-Based Modeling for Estimating Soft Errors Impact on Binarized Neural Network Inference (2004.05089v2)

Published 10 Apr 2020 in cs.LG, cs.CR, and stat.ML

Abstract: Over past years, the easy accessibility to the large scale datasets has significantly shifted the paradigm for developing highly accurate prediction models that are driven from Neural Network (NN). These models can be potentially impacted by the radiation-induced transient faults that might lead to the gradual downgrade of the long-running expected NN inference accelerator. The crucial observation from our rigorous vulnerability assessment on the NN inference accelerator demonstrates that the weights and activation functions are unevenly susceptible to both single-event upset (SEU) and multi-bit upset (MBU), especially in the first five layers of our selected convolution neural network. In this paper, we present the relatively-accurate statistical models to delineate the impact of both undertaken SEU and MBU across layers and per each layer of the selected NN. These models can be used for evaluating the error-resiliency magnitude of NN topology before adopting them in the safety-critical applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.