Papers
Topics
Authors
Recent
2000 character limit reached

Tempered Pareto-type modelling using Weibull distributions

Published 10 Apr 2020 in math.ST and stat.TH | (2004.04983v2)

Abstract: In various applications of heavy-tail modelling, the assumed Pareto behavior is tempered ultimately in the range of the largest data. In insurance applications, claim payments are influenced by claim management and claims may for instance be subject to a higher level of inspection at highest damage levels leading to weaker tails than apparent from modal claims. Generalizing earlier results of Meerschaert et al. (2012) and Raschke (2019), in this paper we consider tempering of a Pareto-type distribution with a general Weibull distribution in a peaks-over-threshold approach. This requires to modulate the tempering parameters as a function of the chosen threshold. Modelling such a tempering effect is important in order to avoid overestimation of risk measures such as the Value-at-Risk (VaR) at high quantiles. We use a pseudo maximum likelihood approach to estimate the model parameters, and consider the estimation of extreme quantiles. We derive basic asymptotic results for the estimators, give illustrations with simulation experiments and apply the developed techniques to fire and liability insurance data, providing insight into the relevance of the tempering component in heavy-tail modelling.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.