Papers
Topics
Authors
Recent
2000 character limit reached

Deep Learning based Frameworks for Handling Imbalance in DGA, Email, and URL Data Analysis

Published 31 Mar 2020 in cs.LG, cs.CR, cs.NE, cs.SI, and eess.SP | (2004.04812v2)

Abstract: Deep learning is a state of the art method for a lot of applications. The main issue is that most of the real-time data is highly imbalanced in nature. In order to avoid bias in training, cost-sensitive approach can be used. In this paper, we propose cost-sensitive deep learning based frameworks and the performance of the frameworks is evaluated on three different Cyber Security use cases which are Domain Generation Algorithm (DGA), Electronic mail (Email), and Uniform Resource Locator (URL). Various experiments were performed using cost-insensitive as well as cost-sensitive methods and parameters for both of these methods are set based on hyperparameter tuning. In all experiments, the cost-sensitive deep learning methods performed better than the cost-insensitive approaches. This is mainly due to the reason that cost-sensitive approach gives importance to the classes which have a very less number of samples during training and this helps to learn all the classes in a more efficient manner.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.