Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Re-conceptualising the Language Game Paradigm in the Framework of Multi-Agent Reinforcement Learning (2004.04722v1)

Published 9 Apr 2020 in cs.AI, cs.CL, cs.LG, and cs.MA

Abstract: In this paper, we formulate the challenge of re-conceptualising the language game experimental paradigm in the framework of multi-agent reinforcement learning (MARL). If successful, future language game experiments will benefit from the rapid and promising methodological advances in the MARL community, while future MARL experiments on learning emergent communication will benefit from the insights and results gained from language game experiments. We strongly believe that this cross-pollination has the potential to lead to major breakthroughs in the modelling of how human-like languages can emerge and evolve in multi-agent systems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.