Adaptive optics with reflected light and deep neural networks
Abstract: Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration. Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated. These datasets are used for training deep neural networks. After training, these networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples. A similar deep learning approach is also demonstrated with scattering guide stars. The predicted aberration corrections are validated using two photon imaging.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.