Mirror Descent Algorithms for Minimizing Interacting Free Energy
Abstract: This note considers the problem of minimizing interacting free energy. Motivated by the mirror descent algorithm, for a given interacting free energy, we propose a descent dynamics with a novel metric that takes into consideration the reference measure and the interacting term. This metric naturally suggests a monotone reparameterization of the probability measure. By discretizing the reparameterized descent dynamics with the explicit Euler method, we arrive at a new mirror-descent-type algorithm for minimizing interacting free energy. Numerical results are included to demonstrate the efficiency of the proposed algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.