Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fluctuation relations and fitness landscapes of growing cell populations (2004.04470v2)

Published 9 Apr 2020 in q-bio.PE and physics.bio-ph

Abstract: We construct a pathwise formulation of a growing population of cells, based on two different samplings of lineages within the population, namely the forward and backward samplings. We show that a general symmetry relation, called fluctuation relation relates these two samplings, independently of the model used to generate divisions and growth in the cell population. These relations lead to estimators of the population growth rate, which can be very efficient as we demonstrate by an analysis of a set of mother machine data. These fluctuation relations lead to general and important inequalities between the mean number of divisions and the doubling time of the population. We also study the fitness landscape, a concept based on the two samplings mentioned above, which quantifies the correlations between a phenotypic trait of interest and the number of divisions. We obtain explicit results when the trait is the age or the size, for age and size-controlled models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.