Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FKAConv: Feature-Kernel Alignment for Point Cloud Convolution (2004.04462v3)

Published 9 Apr 2020 in cs.CV and cs.LG

Abstract: Recent state-of-the-art methods for point cloud processing are based on the notion of point convolution, for which several approaches have been proposed. In this paper, inspired by discrete convolution in image processing, we provide a formulation to relate and analyze a number of point convolution methods. We also propose our own convolution variant, that separates the estimation of geometry-less kernel weights and their alignment to the spatial support of features. Additionally, we define a point sampling strategy for convolution that is both effective and fast. Finally, using our convolution and sampling strategy, we show competitive results on classification and semantic segmentation benchmarks while being time and memory efficient.

Citations (2)

Summary

We haven't generated a summary for this paper yet.