Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rapformer: Conditional Rap Lyrics Generation with Denoising Autoencoders (2004.03965v2)

Published 8 Apr 2020 in cs.CL

Abstract: The ability to combine symbols to generate language is a defining characteristic of human intelligence, particularly in the context of artistic story-telling through lyrics. We develop a method for synthesizing a rap verse based on the content of any text (e.g., a news article), or for augmenting pre-existing rap lyrics. Our method, called Rapformer, is based on training a Transformer-based denoising autoencoder to reconstruct rap lyrics from content words extracted from the lyrics, trying to preserve the essential meaning, while matching the target style. Rapformer features a novel BERT-based paraphrasing scheme for rhyme enhancement which increases the average rhyme density of output lyrics by 10%. Experimental results on three diverse input domains show that Rapformer is capable of generating technically fluent verses that offer a good trade-off between content preservation and style transfer. Furthermore, a Turing-test-like experiment reveals that Rapformer fools human lyrics experts 25% of the time.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com