Papers
Topics
Authors
Recent
2000 character limit reached

Analyzing count data using a time series model with an exponentially decaying covariance structure

Published 7 Apr 2020 in stat.ME and stat.AP | (2004.03130v2)

Abstract: Count data appears in various disciplines. In this work, a new method to analyze time series count data has been proposed. The method assumes exponentially decaying covariance structure, a special class of the Mat\'ern covariance function, for the latent variable in a Poisson regression model. It is implemented in a Bayesian framework, with the help of Gibbs sampling and ARMS sampling techniques. The proposed approach provides reliable estimates for the covariate effects and estimates the extent of variability explained by the temporally dependent process and the white noise process. The method is flexible, allows irregular spaced data, and can be extended naturally to bigger datasets. The Bayesian implementation helps us to compute the posterior predictive distribution and hence is more appropriate and attractive for count data forecasting problems. Two real life applications of different flavors are included in the paper. These two examples and a short simulation study establish that the proposed approach has good inferential and predictive abilities and performs better than the other competing models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.