Papers
Topics
Authors
Recent
Search
2000 character limit reached

Using Cyclic Noise as the Source Signal for Neural Source-Filter-based Speech Waveform Model

Published 5 Apr 2020 in eess.AS | (2004.02191v2)

Abstract: Neural source-filter (NSF) waveform models generate speech waveforms by morphing sine-based source signals through dilated convolution in the time domain. Although the sine-based source signals help the NSF models to produce voiced sounds with specified pitch, the sine shape may constrain the generated waveform when the target voiced sounds are less periodic. In this paper, we propose a more flexible source signal called cyclic noise, a quasi-periodic noise sequence given by the convolution of a pulse train and a static random noise with a trainable decaying rate that controls the signal shape. We further propose a masked spectral loss to guide the NSF models to produce periodic voiced sounds from the cyclic noise-based source signal. Results from a large-scale listening test demonstrated the effectiveness of the cyclic noise and the masked spectral loss on speaker-independent NSF models in copy-synthesis experiments on the CMU ARCTIC database.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.