Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Safe Learning and Control with Sum-of-Squares Analysis and Polynomial Kernels (2004.00662v1)

Published 1 Apr 2020 in eess.SY and cs.SY

Abstract: We propose an iterative method to safely learn the unmodeled dynamics of a nonlinear system using Bayesian Gaussian process (GP) models with polynomial kernel functions. The method maintains safety by ensuring that the system state stays within the region of attraction (ROA) of a stabilizing control policy while collecting data. A quadratic programming based exploration control policy is computed to keep the exploration trajectory inside an inner-approximation of the ROA and to maximize the information gained from the trajectory. A prior GP model, which incorporates prior information about the unknown dynamics, is used to construct an initial stabilizing policy. As the GP model is updated with data, it is used to synthesize a new policy and a larger ROA, which increases the range of safe exploration. The use of polynomial kernels allows us to compute ROA inner-approximations and stabilizing control laws for the model using sum-of-squares programming. We also provide a probabilistic guarantee of safety which ensures that the policy computed using the learned model stabilizes the true dynamics with high confidence.

Citations (17)

Summary

We haven't generated a summary for this paper yet.