Can We Use SE-specific Sentiment Analysis Tools in a Cross-Platform Setting?
Abstract: In this paper, we address the problem of using sentiment analysis tools 'off-the-shelf,' that is when a gold standard is not available for retraining. We evaluate the performance of four SE-specific tools in a cross-platform setting, i.e., on a test set collected from data sources different from the one used for training. We find that (i) the lexicon-based tools outperform the supervised approaches retrained in a cross-platform setting and (ii) retraining can be beneficial in within-platform settings in the presence of robust gold standard datasets, even using a minimal training set. Based on our empirical findings, we derive guidelines for reliable use of sentiment analysis tools in software engineering.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.