Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Design and Simulation of Memristor-Based Artificial Neural Network for Bidirectional Adaptive Neural Interface (2004.00154v1)

Published 31 Mar 2020 in cs.ET and physics.app-ph

Abstract: This article proposes a general approach to the simulation and design of a multilayer perceptron (MLP) network on the basis of cross-bar arrays of metal-oxide memristive devices. The proposed approach uses the ANNM theory, tolerance theory, simulation methodology and experiment design. The tolerances analysis and synthesis process is performed for the ANNM hardware implementation on the basis of two arrays of memristive microdevices in the original 16x16 cross-bar topology being a component of bidirectional adaptive neural interface for automatic registration and stimulation of bioelectrical activity of a living neuronal culture used in robotics control system. The ANNM is trained for solving a nonlinear classification problem of stable information characteristics registered in the culture grown on a multi-electrode array. Memristive devices are fabricated on the basis of a newly engineered Au/Ta/ZrO2(Y)/Ta2O5/TiN/Ti multilayer structure, which contains self-organized interface oxide layers, nanocrystals and is specially developed to obtain robust resistive switching with low variation of parameters. An array of memristive devices is mounted into a standard metal-ceramic package and can be easily integrated into the neurointerface circuit. Memristive devices demonstrate bipolar switching of anionic type between the high-resistance state and low-resistance state and can be programmed to set the intermediate resistive states with a desired accuracy. The ANNM tuning, testing and control are implemented by the FPGA-based control subsystem. All developed models and algorithms are implemented as Python-based software.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.