Papers
Topics
Authors
Recent
2000 character limit reached

Dual gravity with $R$ flux from graded Poisson algebra

Published 31 Mar 2020 in hep-th and gr-qc | (2003.14195v1)

Abstract: We suggest a new action for a ``dual'' gravity in a stringy $R$, $Q$ flux background. The construction is based on degree-$2$ graded symplectic geometry with a homological vector field. The structure we consider is non-canonical and features a curvature-free connection. It is known that the data of Poisson structures of degree $2$ with a Hamiltonian correspond to a Courant algebroid on $TM \oplus T{*}M$, the bundle of generalized geometry. With the bracket for the Courant algebroid and a further bracket which resembles the Lie bracket of vector fields, we get a connection with non-zero curvature for the bundle of generalized geometry. The action is the (almost) Hilbert-Einstein action for that connection.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.